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An Absorbing-Generating Boundary Condition 
for Shallow Water Models 

A.R. Van Dongeren1 and I.A. Svendsen,2 Member, ASCE 

ABSTRACT: An absorbing-generating boundary condition based on the 

Method of Characteristics is derived for the 2D-horizontal nonlinear shal- 

low equations. It allows outgoing waves to leave the computational domain 

through the boundaries with a minimum of reflection while specifying in- 

coming waves at the same boundaries. The boundary condition's absorbing 

properties are tested for both linear and nonlinear waves for a range of angles 

of incidence. Its performance is compared to the classical Sommerfeld radia- 

tion condition for the linear case. Also, a case of simultaneous absorption and 

generation of waves at the same boundary is analyzed. 

1     Introduction 

When analyzing nearshore problems using numerical models it is usually nec- 

essary to limit the computations to a small region around the area of immediate 

interest. This implies introducing artificial boundaries for the computational re- 

gion that form the interface to the exterior which is not modelled or is modelled 

in a simplified way. Thus one of the most important problems in developing time- 

dependent shallow water models is the specification of accurate boundary conditions 
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along these artificial boundaries because, after long enough time, the performance of 

these conditions will dominate the model results in the entire computational domain. 

These time-dependent models essentially solve approximations to the equations 

of motion (conservation of mass and momentum) by integration in time of cer- 

tain dependent variables, typically surface elevation and horizontal velocities. The 

boundary conditions are required to provide a similar upgrading in time of the same 

variables along the boundaries. 

In developing the nearshore circulation model SHORECIRC (Van Dongeren et 

al, 1994, 1995), which is capable of describing a number of phenomena (such as 

edge-waves, surfbeat, longshore currents, shear waves, etc.), we encountered exactly 

this problem. For our purposes it was necessary to develop boundary conditions on 

the artificial boundaries that are able to generate a specified long wave and simul- 

taneously absorb outgoing waves, i.e. an absorbing-generating boundary condition. 

Most of the existing literature on the topic of artificial boundaries is concerned 

with absorbing (sometimes called radiating, non-reflective or open) boundary condi- 

tions specifically derived for the wave equation or the shallow water equations. For 

a thorough review on this subject, we refer to Givoli (1991). 

In one of the most frequently quoted papers, Engquist & Majda (1977) [E&M] 

developed a perfectly absorbing boundary condition which is nonlocal in space and 

time. This means that the complete time history along the entire boundary is re- 

quired in order to update the variables at any point along the boundary in time. 

Because this is very impractical for any numerical application, E&M derived local 

approximations to the general solution of increasing order of accuracy. The approx- 

imations are centered around chosen angles of incidence 0n between the boundary 



normal and the direction of the outgoing waves. Higdon (1986, 1987) derived a 

general form of this radiation condition and showed that it can be written as 

(s+-vf)"«=° (i) 
\ot cosvnoxJ 

where n is the order of accuracy and c0 is the linear phase speed. This expression 

gives the best absorption when the angle of the outgoing wave to the normal is 9n. 

For 8n = 0° the equation reduces to E&M's boundary condition, which only absorbs 

normally incident waves optimally. To the first order of the approximation (n — 1), 

the E&M boundary condition further reduces to the Sommerfeld radiation condition 

(Sommerfeld, 1964) 

which essentially states that the outgoing wave is propagating in the positive direc- 

tion without change of form. Eq. (1) was also found independently by Keys (1985) 

and is an improvement over the boundary condition developed by E&M because the 

reflection coefficient can be greatly reduced if the angle of incidence 0n is known 

in advance. This might be the case for some types of problems (e.g., waves radiat- 

ing from a source inside the computational domain), but not for the more general 

models we are considering here. 

Another disadvantage of this type of boundary condition is that the solution to 

the problem is assumed to have a certain form. Broeze k Van Daalen (1992) did not 

make that assumption and derived a boundary condition from the local energy flux 

in the normal direction to the boundary using the variational principle and showed 

improved accuracy when used in a panel method. 

Unfortunately, the above mentioned boundary conditions are only capable of 

absorbing waves and (except for Broeze k Van Daalen) only address the linear 

problem.   Hibberd (1977) considered the more general problem of simultaneously 



generating and absorbing waves and derived a boundary condition for the nonlinear 

shallow water equations (NSW) where the outgoing wave is calculated using the 

Method of Characteristics while an incoming Riemann variable associated with an 

incident uniform bore is specified. On a similar basis Verboom et al. (1981) gave 

more general expressions for weakly-reflective boundary conditions based on the 

specification of incoming Riemann variables. Verboom k Slob (1984) derived two 

orders of approximation of this type of boundary condition and calculated reflection 

coefficients which were of the order of a few percent. However, the applications in 

both papers only deal with situations where no incoming wave is specified and the 

boundary condition reduces to the case of absorption only. 

In the case of simultaneous absorption and reflection, it is not possible to specify 

the incoming Riemann variable since it is a function of the unknown surface elevation 

and velocity. Instead, Kobayashi et al. (1987) used the outgoing characteristic and 

substituted a linear long wave relationship between the velocity and the surface 

elevation to solve for the outgoing wave. They only solve the problem for one 

horizontal dimension, equivalent to the case of normal incidence and did not report 

on the accuracy of the boundary condition. The present paper gives an extension of 

Kobayashi et al. (1987)'s boundary condition to the general case of two dimensions 

and expands the condition to a higher order of approximation. 

The outline of this paper is as follows. In Section 2 we discuss the formulation of 

the problem. In Section 3 the boundary condition is derived from the fundamental 

equations for two orders of the approximation. In Section 4 the reflection properties 

of both versions are investigated for the case of absorption only and compared to 

the classical Sommerfeld radiation condition for the linear case. In Section 5 the 

boundary condition is further tested for the case of simultaneous generation and 



absorption at the same boundary. 

2    Formulation of the problem 

The boundary conditions we specify along the artificial ocean-side boundaries 

must guarantee a unique and well-posed solution to the differential equations. As 

may also be inferred from the literature review given above, this is not a straight- 

forward problem, and it appears that to some extent waves and currents need to be 

addressed separately. 

From the outset one would expect that the idea of emulating the effects of a large 

ocean in a computation that only covers a small region of that ocean imposes some 

limitations on what can actually be represented in the model, and this is true. More 

importantly, however, it also requires a clarification of which physical mechanisms 

we should actually try to describe along those boundaries. 

Our requirements can be formulated by stating that the boundary conditions 

need to satisfy two criteria: 

1. The region outside the computational domain can only influence the motion 

inside through the incident (long) waves and through the currents along the 

boundaries. Thus we must assume that we know and can specify those currents 

and incident waves. 

2. (Long) waves propagating out of the computational region must be allowed to 

propagate freely through the open ocean-side boundaries with minimal reflec- 

tion. 



It turns out that whereas outgoing waves can be separated from the total signal 

and absorbed at the artificial boundaries, this is not the case for currents. The dis- 

tribution of the currents is essentially an elliptic problem and therefore the currents 

have to be specified along the entire boundary to uniquely specify the problem. This 

also implies, however, that in the general case extensive information is needed about 

the currents outside the domain in order to be able to specify the currents along the 

computational boundary. 

Finally it raises the question of how to distinguish between waves and time- 

varying currents. A closer inspection of this problem suggests that this is a matter 

of the time scale of the variations relative to the time it takes for a disturbance to 

propagate across the computational domain. For simplicity, we limit our scope in 

the present paper to the case of incident long waves without currents. 

Thus the boundary conditions must be able to generate a specified long wave 

and simultaneously absorb outgoing waves, in the presence of known currents and 

ideally without much additional computational effort. 

3    Derivation of the boundary condition 

The governing equations of the SHORECIRC model are the depth-integrated, 

shortwave averaged continuity and momentum equations (Van Dongeren et a/., 1994; 

Svendsen & Putrevu, 1995). If we place the open boundaries carefully we can achieve 

that near these boundaries the local forcing is weak. This means that the dominating 

terms in the continuity and momentum equations are the terms corresponding to 

the nonlinear shallow water (NSW) equations in matrix form: 



d 
dt 

u 
V 

.h. 

+ 
u   0   g 
0   ü   0 
h   0   ü 

d_ 
dx 

u V 0   0 
V + 0 v   g 
h 0 h   v 

d_ 
dy 

u 
V 

h 

•dho + fx 

0 

9- 
9'dy -r Jy (3) 

where h is the total water depth h = h0 + (,h0 is the still water depth and ( is the 

shortwave averaged surface elevation, ü and v are the depth averaged and shortwave 

averaged velocities in the x and y directions, respectively. See Fig. 1 for a definition 

sketch. It may be worth emphasizing that since we are considering the general case 

of short wave motion with arbitrary time variation, the shortwave averaged ( and 

ü, v represent surface elevation and particle motion, respectively, in the infragravity 

wave motion. Usually ( will also include a steady set-down or set-up component. / 

represents all the local forcing terms for the motion, which comprise the radiation 

stress gradients, the current-current and current-wave integrals (originating from 

the non-uniform variation of the velocities over depth) and the bottom and wind 

shear stresses. These effects are all included in the original equations. 

Following the procedure outlined in Whitham (1974) and Abbott (1979), the 

eigenvalues and eigenvectors are obtained from this system of equations. The three 

eigenvectors span the space P: 

/ cos "d    cos d      sin d 
sin ■&    sin d 

'a      ~Vs 

(4) 

where $ is the angle between the normal to the boundary and the z-axis as identified 

by Verboom et al. (1981) (see Fig.2). Premultiplying the system of equations (3) 

with P"1 yields the governing equations in characteristic form as derived by Verboom 

et al. (1981). (Please note that the eigenvectors in their Eq. (11.5) contain a typo 

and are therefore not identical to the matrix P.) 



It is convenient to choose the x-axis normal to the seaward boundary of our 

rectangular domain, which sets d = 0. The equations in characteristic form then 

simplify to: 

dß~ ,        ,dß-     _dß~  ,    dv       dh0 

dß+        ,    ,   ,dß+     _dß+      dv      dh (~s 
-£-= -{u + c)-£-- v-%- -C— + g-j— + Fß+ (6) 
dt dx oy        oy        ox 

-f   = -u-^-- v-^-- gf-+ Fy (7) 
<9i ox       oy       oy 

In (5) the Riemann-invariant ß   is defined as 

ß~   =   ü-2c   =   lJ^Q-2\/s(ho + 0 (3) 

where Qx is the total flux in the x direction and ü is the depth averaged velocity. 

The Riemann-invariant of (6) is similarly defined as ß+ = ü + 2c. It turns out that 

the 7-equation is the y-momentum equation itself which has the Riemann-invariant 

Q« 7    =     V 
(K + C) 

(9) 

The definition sketch in Fig. 3 shows that ß+ propagates along a characteristic 

in the positive x direction, ß~ in the negative x direction and 7 in the y direction. 

The forcing terms Fß+, Fß- and F1 originate from the /-terms in (3). These terms 

imply that ß+,ß~ and 7 vary along their characteristics and the invariants should 

therefore actually be called Riemann variables. 

During the computation we will at time step n know the total value of (n and 

(Q™, Qn) at interior as well as boundary points. The incoming wave motion is spec- 

ified along the x = 0 boundary through specification of (Qx,i,Qy,i)- The governing 

8 



equations (3) will then provide the values of the total (, Qx, Qy for interior points in 

the domain, and the problem is to determine the equivalent total values along the 

boundary at time step n + 1. In this process we also determine the parameters of 

the outgoing wave. 

In the following, the absorbing-generating boundary condition for two different 

orders of the expansion are derived for a boundary along the y-axis (x = 0) only. 

The results can readily be generalized to arbitrary boundary directions which is 

omitted here. 

Assuming linear superposition of the incoming wave (subscripted i in the follow- 

ing) and the outgoing wave (subscripted r) we can write 

Q = QX,i + QX,r C = Ö + Cr (10) 

Without further approximation the incoming Riemann-variable (8) can then be 

rewritten as 

L     =      Q**   (l    |    5 + CrV1    ,    Q».r   A    ,    Cf+jrV1 

c0 c0h0 I K    ) coh0 V h0    ) 

i + k+lL (ii) 
\ h0 

where 

Co - ygho (12) 

At this point we introduce the assumption that the total volume flux in the direction 

of the wave propagation is related to the surface elevation by the equation: 

Q = c((- C) + Q (13) 

where c( represents the volume flux in the oscillatory part of the motion. Q is the 

net volume flux which consists of the nonlinear mass flux, Qw, in the infragravity 



waves and the "current". ( is the average over the infragravity wave period of the 

infragravity wave surface elevation (. It has been shown (see e.g. Svendsen (1974) 

or Svendsen k Justesen (1984) for two different derivations) that this relationship, 

which is purely kinematical, is exact for plane waves of constant form, no matter 

what height or nature. Thus the use of this relationship here only implies that 

assumption for the incoming and outgoing wave motion in the neighborhood of 

the boundary in question. (Svendsen & Justesen (1984) found that even for waves 

deforming rapidly towards breaking, the error from using this relationship was less 

than 5%). 

For simplicity we assume in the following that ( as well as Q are zero. Then, 

again using linear superposition, Eq. (13) for the ar-component of Qi and Qr can be 

written as 

Qx,i = C (i COS Oi Qx,r = -C (r COS 0r (14) 

where 0,- and 0T are defined as the angles between the normal to the boundary and 

the incoming and outgoing waves in the range [-§, f], respectively. Eq. (11) then 

becomes 

ß Qx,i   (\ Qx,i _ Qx,r       \ .    Qx,r   /, Qx,i _ Qx,r ^ox,i   I i 

~~c~0     ~~    c0h0\   ^ h0c cos Oi       h0ccosOrJ     ^ c0h0 V   '   hoccos0i       h0ccosO 

_    2 fl +       ®x,i ®x'r     ) * (15) 
h0c cos Oi       h0c cos 0r 

Here we can expect that Qx/h0c0 < 1. If we expand this expression to first order 

with respect to Qx/h0c0 and solve with respect to Qx<r we get 

^ = ,   C°;*;n (M/T + 2c0) - (Mcosft - 1)) + O (^)2 (16) 
(cos 0r + 1    v \c0n0j 

10 



It turns out, however, that for larger amplitude waves this expansion is one of 

the most significant error sources. It is therefore useful to carry the expansion of 

(15) to second order which yields a quadratic equation in QXiT. Again we can solve 

for Qx<r and eliminating the false root we then get the second order expression for 

cos 6r (c0h0(cos 6r + 1) + Qi{cos 0; - cos 6r - §)) 
Qx'r = (2cos0r + §) 

,\ 

(4cos 0r + 3)(Q?(f - cosflQ + Qjc0h0(cos 6{ - 1) - c0h
2

0(ß- + 2c0)) \ 
1                        (c0h0(cos6r + 1) + Qi(coB6i - cos9r - |))2 ) 

+0 f%)3 (17) 
\c0h0J 

These equations have two unknowns, Qx>r and 6>r, which can be determined by 

realizing that 

er = arctan (^A (18) 

The additional unknown QVtT can be solved by using (9) which is rewritten as: 

Qv,r = l(h0 + ()-Qy,i (19) 

in which QVyi is specified and 7 is determined by integration of the last of the 

characteristic equations (7). 

In these expressions ß~ is the Riemann-variable updated to the next time level 

by (5)- Qi is the total flux of the known incoming wave at the same time level. From 

(16) or (17), and (18) and (19) we can find the unknowns Qx<r and 6r iteratively. 

With the incoming wave known through specification, the boundary value of total 

flux Qx can determined at the next time step. 

11 



4    Reflection properties 

The absorption properties of the boundary condition are tested for a unidirec- 

tional wave in a domain of constant depth for various angles of incidence and wave 

amplitudes. In the following example waves are generated at the x - 0 and y = 0 

boundaries and absorbed at all four boundaries for both versions of the bound- 

ary condition. The physical parameters are still water depth h0 and wave length 

A = 100 h0, which yields a period T = l00^ho/g. The numerical parameters are 

Ax = Ay = A/60 and A* = T/100 which yields a Courant number of 0.6. A 

second-order predictor-corrector numerical scheme is used for all tests. 

Linear waves 

In the first test, sinusoidal waves with a small amplitude A/h0 = 0.01 are prop- 

agated using the linear equations and absorbed using the boundary condition that 

applies the lowest order expansion of QXtf, (16). Sinusoidal waves are specified as 

the initial condition. This case was previously shown in Van Dongeren et al. (1994). 

The reflection properties are computed for a square domain 

fti = {(a;,y):0<:E<A,0<3/<A} (20) 

where we want to make sure that the reflections are caused by one absorbing bound- 

ary (at x = A) only. This is accomplished as follows. Solutions are computed in two 

domains: a rectangular domain 

n2 = {{x,y):0<x<\,Q<y<3\} (21) 

and in a larger, square domain, 

n3 = {(x,y):0<x<3\,0<y<3\} (22) 

12 



see Fig. 4 for a definition sketch. 

The non-generating boundaries in domain tt3 are placed so far away that they 

have no effect on the solution in the smaller domain Oi during the duration of 

the simulation. Therefore in the smaller domain we can consider the f)3-solution 

free of reflection errors. Similarly, in domain 02 the non-generating boundary at 

y = 3 A will not influence the solution in the smaller domain fia. Hence the difference 

between the two solutions can only be caused by the absorbing boundary at x = A. 

The two solutions are subtracted from each other at the instant in time tn - T/ cos 0; 

when the initial condition has propagated out of üx and the difference is normalized 

by the amplitude A: 

ei(l,,,... tl) = ik(*.»,«-;*)-fa(*.».«-;*)i (23) 

where (Q2 and (Q3 
are the solutions for the test runs in the domains 02 and fi3, 

respectively. 

Eq. (23) yields a spatial picture of the reflection error in üa due to the absorbing 

boundary condition at x = A. Figs. 5a, c and e show contours of the spatial errors 

for three angles of incidence: 0,- = 0, | and \ where 0, is defined as the angle between 

the direction of propagation and the x-axis. The errors are of the order 0.005 or 

0.5%. 

Note that the boundary condition is derived based on the nonlinear equations in 

characteristic form while the waves themselves are run under the linear equations, 

which is in itself inconsistent but allowable for small amplitude waves. 

Nonlinear waves 

To show the effect of the nonlinear terms in the equations, a second test is run for 

13 



the same parameters and for the same angles of incidence but using the nonlinear 

equations. The waves generated at the boundary are again sinusoidal. The spatial 

errors are plotted in Figs. 5b, d and f. Comparison to the previous case shows that 

including the nonlinear terms in the governing equations increases the error by a 

factor 2: they are now of the order of 1%. This is due to the fact that in the first 

order approximation (16), Eq. (14) reduces to the linear relationships of constant 

form 

Qx,i = Co (i COS 0i Qx,r = -C0 Cr COS 6r (24) 

where c0 is given by (12). This means that the first order boundary condition absorbs 

constant form (linear) waves better than waves that change shape. 

As can be seen in Fig. 5, the errors are spatially dependent. In order to obtain 

a single measure of the error as a function of the angle of incidence, the Z2-error is 

computed (Strikwerda, 1989). The L2-error is defined as the squared difference of 

(n2 and Cn3 evaluated in the domain fii and normalized by the RMS of the larger 

area solution at the time instant t = tn when the initial condition has propagated 

out (which is different for each #;): 

tna.    yfah (Cn, (a, y, *"; ft) - Cn, (*, y, *n;W ,«* 
e2(*;ft) = - .   i-^J 

>/Eni(Cn,(*,y,tB;fc))2 

Figure 6 shows L2-error for the range of angles of incidence of 6>t- = [0, ^, f, ... , f ] 

for both the linear and nonlinear low-amplitude cases described above. Also plotted 

in Figure 6 is the error incurred when the Sommerfeld radiation condition (2) is 

applied for sinusoidal waves. This condition shows near-perfect absorption for waves 

of normal incidence but shows large errors for more obliquely incident waves. In fact, 

the error is 100% for glancing angles.  In contrast, the errors due to the boundary 

14 



condition derived in Section 3 are of the order of 0.5% to 1% for the whole range of 

angles of incidence, which is acceptable for most applications. 

However, the error is a function of the nonlinearity parameter, S = A/h0. It can 

be shown that if (16) is applied in the boundary condition, the error e2 ~ 8. In a 

third test, the model is run for the same parameters as the previous test but with 

a wave with a ten times larger amplitude, A/h0 = 0.1. The spatial variation of 

the reflection errors, see Fig. 7a, c and e, are about one order of magnitude larger 

than in the previous test, as one should expect. Fig. 8 (dashed line) shows that the 

JL
2-error versus 0; for a single absorption boundary is about 10%, or 8* 100%, which 

is too large for practical purposes. 

As mentioned in Section 3, a major error source for large amplitude waves is the 

first order expansion of (15). For larger amplitudes, it is therefore advantageous to 

use the second order approximation (17) as the boundary condition. The spatial 

errors as calculated by (23) are shown in Fig. 7b, d and f. We see that the error 

is now reduced by a factor 5 compared to the left-hand side panels. For a single 

absorbing boundary, the Z,2-error versus the angle of incidence 9i as calculated by 

(25) is shown in Fig. 8 (solid line). It has a magnitude of about 3%, which is close to 

the theoretical error e2 ~ 8/A for the second order approximation. For our purposes, 

this magnitude of the error for medium height waves is acceptable. 

Since the second order approximation (17) is explicit in QXiT, it does not require 

considerably more computational time than the linear expression (16) and it will 

therefore be used in the remainder of this paper. 

15 



5    Example of simultaneous absorption and gen- 
eration 

To illustrate the application of the proposed boundary condition for the case 

of simultaneous absorption and generation of waves at one boundary, consider a 

domain with an absorbing-generating boundary at the x = 0 boundary and a wall 

at x = 4.25A. From a cold start, incoming waves are generated at normal incidence 

from t = 0 T - 19 T, tapered with a hyperbolic tangent function during the first and 

last period of generation in order to eliminate transients due to shocks. This wave 

train will reflect off the wall at x = 4.25A and produce a standing wave until the 

incident waves are turned off at T = 19T. Parameters used are: water depth h0, 

wave length A = 100Äo, T = A / y/fh~0, A = 0.01 h0, Ax = Ay = ^ and Cr = 0.6. 

The numerical scheme for the linearized equations is used in this example. 

Fig. 9a shows the time series of the specified volume flux of the incident waves at 

x = 0, normalized by c0 h0. The effect of the hyperbolic tangent function is clearly 

visible as the amplitude grows to its full value in little more than one wave period. 

Fig. 9b shows the flux of the outgoing wave train at the same point as calculated by 

(17). The outgoing wave train is a near-perfect mirror image of the incident wave 

train except for some small trailing waves around t = 28T. Still water is recovered 

almost immediately after the outgoing wave passes through the x = 0 boundary, 

which indicates that the reflections are small. The time series of the total flux in 

Fig. 9c, which is the sum of the two time series above, shows first a progressive 

wave in the +x direction, then the anti-node of the flux of a standing wave, then a 

progressive wave in the -x direction and finally still water. This Figure qualitatively 

shows that the absorbing-generating boundary condition works very well. 

16 



In order to measure the reflection error due to the absorbing-generating boundary 

condition, the envelope of the standing wave, £, is calculated when the front of the 

incident wave train has propagated through the domain and has almost reached the 

x — 0 boundary (which happens at t = 8.5 T). The envelope is shown in Fig. 10a 

(solid line). This Figure does not show the entire domain because the tapered front 

of the wave does not produce a standing wave at this time. The standing wave is 

a result of the summation of the incident wave train and its reflection off the wall 

and has a maximum amplitude of 2 A. When the front of the wave train reaches the 

open boundary at t — 8.5 T, it will be absorbed almost perfectly as indicated in Fig. 

9b. However, a small portion of the wave with amplitude Ac will be reflected and 

propagate back in the +x direction. This small error wave will itself reflect from the 

back wall and produce a standing wave of its own. Again, the envelope of the total 

standing wave (the standing wave due to the specified wave and the error wave) can 

be calculated at a time just before this small error wave reaches the open boundary, 

which happens at t — 17 T. This envelope, ( + (e, has a maximum amplitude of 

2(A + At) and is shown as the dashed line in Fig. 10a. Due to the smallness of the 

error wave, the dashed line is almost indistinguisable from the solid line. A measure 

of the error in amplitude caused by the generating-absorbing boundary can then be 

defined as the difference between the two envelopes normalized by the amplitude of 

the original standing wave or 

L 
" = JA (26) 

which is shown in Fig. 10b and has a maximum of about 0.2%. 
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6    Discussion 

The numerical tests described above show that the reflection errors due to the 

present boundary condition are of the order of only a few percent for cases of 

absorption-generation as well as absorption only. This is a remarkable improve- 

ment over the absorption properties of the widely-used radiation conditions based 

on the wave equation, which only absorb waves at one specific angle of incidence 

perfectly and show large errors for other angles of incidence. 

In its present form the boundary condition has one major drawback. It cannot 

absorb multiple waves with a difference between angles of incidence larger than f. 

This is due to the fact that by using (14) the set of multiple waves at the boundary 

is essentially approximated by one representative progressive wave which is not valid 

when two or more wave trains intersect at oblique angles. 

It is emphasized that for simplicity the present form of the boundary condition 

does not account for time-varying or steady currents. However, the mathematical 

modification of either (16) or (17) to include currents is straightforward. The real 

problem, as stated in Section 2, lies in the philosophical distinction between currents 

and long waves and in the fact that currents would have to be known a priori and 

specified along all boundaries of the domain. 

7     Conclusions 

In this paper two orders of an absorbing-generation boundary condition for the 

nonlinear shallow water equations are derived based on the Method of Characteris- 

tics. Numerical tests show that by using this boundary condition, reflection errors 
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can be limited to a few percent of the incident wave amplitude for the full range of 

angles of incidence, which is an improvement over the classical radiation conditions. 

Unlike those radiation conditions, the present boundary condition allows simulta- 

neous specification of an incident wave train and absorption of an outgoing wave 

train at the same boundary, which makes it particularly suitable for application on 

artificial oceanside boundaries in shallow water models. 
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Appendix II. Notation 

The following symbols are used in this paper: 

A - wave amplitude 
Ae - amplitude of reflected wave 
c - nonlinear shallow water phase speed 
c0 - linear shallow water phase speed 

fx,fy - forcing terms in NSW-equations 
Fß+, Fß-, F1 - forcing terms in Equations in Characteristic Form 

g - gravity 
h - total water depth 
h0 - still water depth 
P - eigenvector space 
Q - total flux 

Qxi Qy - total flux in x and y directions 
Qi - total flux of the incoming wave 

Qx,ii Qy,i - Aux °f the incoming wave in x and y directions 
Qx,r, Qy,r - flux of the outgoing wave in x and y directions 

Q - total flux of the current 
ü,v - shortwave averaged and depth averaged horizontal velocities 

T - wave period 
/?+,/?~,7 - Riemann variables 

8 - nonlinearity parameter 
ei,e2,£3 - reflection errors 

( - shortwave averaged surface elevation 
£•, (r - surface elevation of incoming and outgoing wave 

Cfi21 Cn$ ' surface elevation computed in the domains £l2 and Q,3 

( - infragravity wave-averaged surface elevation 

£, (e - envelopes of the standing wave 
A - wave length 
9n - angle of incidence of the radiated waves 

9{, 6r - angle of incidence of incoming and outgoing wave 
•d - angle between boundary and z-coordinate axis 

J71,ri2,^3 - domains used in reflection tests 
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Figure 1: Definition sketch. 
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a 

Figure 10: (a) Envelope of the standing wave of the incident wave (solid line) and 
of the incident and error wave (dashed line), (b) Normalized difference between the 

two envelopes. 
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